Rifampicin enhances activity of daptomycin and vancomycin against both a polysaccharide intercellular adhesin (PIA)-dependent and -independent Staphylococcus epidermidis biofilm.

نویسندگان

  • Michael E Olson
  • Shawn R Slater
  • Mark E Rupp
  • Paul D Fey
چکیده

OBJECTIVES AND METHODS This study addressed the efficacy of daptomycin, vancomycin, rifampicin, daptomycin/rifampicin and vancomycin/rifampicin against a polysaccharide intercellular adhesin (PIA)-dependent and -independent Staphylococcus epidermidis biofilm using flow cell and guinea pig tissue cage models. RESULTS The flow cell model of both PIA-dependent and -independent biofilms demonstrated that the viable cell count after treatment with daptomycin/rifampicin was significantly lower (P<0.05) than after treatment with vancomycin, vancomycin/rifampicin, daptomycin or rifampicin alone. To validate these observations, a guinea pig tissue cage model was used. The results demonstrated that the addition of rifampicin to daptomycin or vancomycin sterilized 5/6 tissues cages colonized with S. epidermidis 1457 (PIA producing). Similar results were noted with S. epidermidis 1457 icaADBC::dhfr (non-PIA producing), where daptomycin/rifampicin and vancomycin/rifampicin sterilized 5/6 and 6/6 tissue cages, respectively. There was no statistical difference in comparison with the no-treatment control when both 1457 and 1457 icaADBC::dhfr were treated with vancomycin and daptomycin alone. Furthermore, treatment with rifampicin alone sterilized 5/6 and 3/6 1457 and 1457 icaADBC::dhfr tissue cages, respectively. CONCLUSIONS Interpretation of these data suggests that rifampicin is highly active against S. epidermidis biofilms and both vancomycin and daptomycin are effective at reducing the subpopulation of bacteria that develop rifampicin resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- ...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination.

Hemagglutination of erythrocytes is a common property of Staphylococcus epidermidis strains, which is related to adherence and biofilm formation and may be essential for the pathogenesis of biomaterial-associated infections caused by S. epidermidis. In three independent biofilm-producing, hemagglutination-positive S. epidermidis isolates, interruption of the icaADBC operon essential for polysac...

متن کامل

Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis.

Staphylococcus epidermidis is a major nosocomial pathogen primarily infecting immunocompromised individuals or those with implanted biomaterials (e.g., catheters). Biomaterial-associated infections often involve the formation of a biofilm on the surface of the medical device. In S. epidermidis, polysaccharide intercellular adhesin (PIA) is an important mediator of biofilm formation and pathogen...

متن کامل

Biofilm deficiency in polysaccharide intercellular adhesin-negative variants of Staphylococcus epidermidis selected by subminimal inhibitory concentrations of gentamicin.

Staphylococcus epidermidis is a cause of orthopedic device-related infection, and to treat such infection, biofilms should be controlled. Polysaccharide intercellular adhesin (PIA) is associated with the biofilm-forming ability of staphylococcal strains. PIA in biofilm-positive staphylococcal strains can be detected by the Congo red agar (CRA) method. In this study, we used the CRA method to ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 65 10  شماره 

صفحات  -

تاریخ انتشار 2010